
14
Mungo and StMungo: Tools for
Typechecking Protocols in Java

Ornela Dardha1, Simon J. Gay1, Dimitrios Kouzapas1, Roly Perera1,2,
A. Laura Voinea1 and Florian Weber1

1School of Computing Science, University of Glasgow, UK
2School of Informatics, University of Edinburgh, UK

Abstract

We present two tools that support static typechecking of communication
protocols in Java. Mungo associates Java classes with typestate specifica-
tions, which are state machines defining permitted sequences of method
calls. StMungo translates a communication protocol specified in the Scribble
protocol description language into a typestate specification for each role in
the protocol by following the message sequence. Role implementations can
be typechecked by Mungo to ensure that they satisfy their protocols, and then
compiled as usual with javac. We demonstrate the Scribble, StMungo and
Mungo toolchain via a typechecked POP3 client that can communicate with
a real-world POP3 server.

14.1 Introduction

Modern computing is dominated by communication, at every level from
manycore architectures through multithreaded programs to large-scale dis-
tributed systems; this contrasts with the original emphasis on data processing.
Early recognition of the importance of structured data meant that high-level
programming languages have always incorporated data types and supported
programmers through the techniques of static and dynamic typechecking. The
foundational status of structured data was explicitly recognised in the title
of Wirth’s classic 1976 text Algorithms + Data Structures = Programs, but
a more appropriate modern slogan would be Programs + Communication

309



310 Mungo and StMungo: Tools for Typechecking Protocols in Java

Structures = Systems. The new reality of communication-based software
development needs to be supported by programming tools based on struc-
turing principles and high-level abstractions. Given the success of data types,
it is natural to apply type-theoretic techniques to the specification and ver-
ification of communication-based code. During the last twenty years, this
goal has been pursued by the expanding and increasingly active research
community on session types [12, 13, 24]. A session type is a formal structured
description of a communication protocol, specifying the type, sequence and
direction of messages. By embedding this description in the type system of a
programming language, adherence to the protocol can be verified by static
typechecking; if desired, dynamic monitoring can be introduced into the
runtime system.

Several researchers have worked towards making typechecked commu-
nication structures available for mainstream software development, by trans-
ferring session types from their original setting of pi-calculus to functional
and object-oriented languages [3, 5–8, 15, 17, 19]. Gay et al. [9] proposed
an integration of session types and object-oriented programming through the
concept of typestates [22], in which methods are constrained to be called
only in particular sequences. They defined a translation from the session
type of a communication channel endpoint into a typestate specification that
constrains the use of send and receive methods on an object representing the
channel endpoint. Their notation for typestate specifications was inspired by
the syntax of session types.

Dardha, Gay, Kouzapas and Perera extended that work and implemented
it as Mungo [16], a front-end typechecking tool for Java. They also gen-
eralised the translation from session types to typestate specifications, so
that it handles multiparty [11] instead of binary session types, and made
it concrete by implementing StMungo [16], a translator from the Scribble
[20, 25] protocol description language into Mungo specifications. The Scrib-
ble description of a protocol is translated into an API with which to program
implementations of protocol roles; the typestate specification associated with
the API permits static checking of the correctness of the implementation
of a role. Typestate specifications do not represent the notion of duality of
session types; compatibility between roles depends on the assumption that
their typestate specifications are derived from a single global session type.
The paper by Kouzapas et al. [16] illustrated the use of Mungo and StMungo
with a substantial case study of an SMTP client [21], including the low-level
implementation details necessary to enable communication with standard
SMTP servers. This achieved the long-standing goal of using session types to
specify and verify implementations of real internet protocols.



14.2 Mungo: Typestate Checking for Java 311

The present chapter describes Mungo and StMungo in relation to
three examples. The first, in Section 14.2.1, illustrates Mungo by defin-
ing and checking a typestate specification for an iterator. The second, in
Section 14.3, is a simple multiparty scenario based on a travel agency. Finally,
in Section 14.4, we show how Mungo and StMungo can be used to typecheck
a client for the POP3 protocol [18].

14.2 Mungo: Typestate Checking for Java

Mungo is a static analysis tool that checks typestate properties in Java
programs. Mungo implements two main components. The first is a Java-
like syntax to define typestate specifications for classes, and the second is
a typechecker that checks whether objects that have typestate specifications
are used correctly. Mungo typechecks standard Java code without syntactic
extensions; typestate specifications are defined in separate files and are asso-
ciated with Java classes by means of the Java annotation mechanism. After
typechecking with Mungo, programs can be compiled and run using standard
Java tools. The declaration of a typestate specification in a single file contrasts
with other approaches that take the viewpoint of typestate as pre- and post-
conditions on methods; we discuss this point in Section 14.5. If a class has
a typestate specification, the Mungo typechecker analyses each variable of
that class in the program and extracts the method call behaviour (sequences
of method calls) through the variable’s life. Finally, it checks the extracted
information against the sequences of method calls allowed by the typestate
specification.

Mungo is implemented in the JastAdd [10] framework, which is a
Reference Attribute Grammar (RAG) meta-compiler suite compatible with
Java. JastAdd provides a Java parser and typechecker, and was also used to
implement a parser for the typestate specification language.

Mungo supports typechecking for a subset of Java. The programmer
can define classes with typestate specifications and classes without them.
The typechecking procedure tracks variables storing instances of classes
with typestate specifications, through argument passing and return values.
Moreover, the typechecking procedure for the fields of a class follows the
typestate specification of the class to infer a typestate usage for the fields. For
this reason fields that have typestate specifications must be defined in a class
that also has a typestate specification.



312 Mungo and StMungo: Tools for Typechecking Protocols in Java

Mungo first runs the Java typechecker provided by the JastAdd frame-
work. If there are no errors then Mungo performs additional well-formedness
checks before it runs the typestate checking procedure. First, the tool checks
for well-formed typestate specifications: they must be deterministic and all
states must be reachable from the initial state. Second, it checks that a class
with a typestate specification implements all the methods required in the
typestate. Third, arrays cannot store objects that have typestates, because
array access, and thus inference for objects that are stored in an array, cannot
be determined at statically. Finally, fields with typestate specifications must
be private and non-static, to disallow external interference with their state.

Completing the coverage of Java will require further work. Some features
we anticipate to be relatively straightforward extensions, such as synchro-
nised statements, the conditional operator ?:, inner and anonymous classes,
and static initialisers. Generics, inheritance and exceptions are non-trivial.
Currently, generics are not supported, while inheritance is supported for
classes without associated typestate behaviour. Exceptions are supported
syntactically but are type-checked under the (unsound) assumption that no
exceptions are thrown; a try{...} catch(Exception e) {...} statement is
typechecked by typechecking the try block but not the catch block. If
the program does not throw exceptions then there will be no violations of
typestate specifications, but exception handlers may violate typestates.

14.2.1 Example: Iterator

We introduce some of the features of Mungo through an example that
enforces correct usage of a Java Iterator. The example shows how a program-
mer can define an API and associate it with a typestate specification in order
to constrain the order in which methods can be called. In the code below we
define class StateIterator to wrap a Java Iterator. We use the Java anno-
tation syntax @Typestate("StateIteratorProtocol") to associate the class
StateIterator with the typestate specification StateIteratorProtocol. We
often refer to a typestate specification as a protocol, following the established
terminology of “object protocol” in the typestate literature.

1 package iterator;

2 import java.util.Iterator;

3

4 @Typestate("StateIteratorProtocol")

5 class StateIterator {



14.2 Mungo: Typestate Checking for Java 313

6 private Iterator iter;

7

8 public StateIterator(Iterator i) { iter = i; }

9 public Object next() { return iter.next(); }

10 public void remove() { iter.remove(); }

11 public Boolean hasNext() {

12 if(iter.hasNext() == true)

13 return Boolean.True;

14 return Boolean.False;

15 } }

We assume that the underlying implementation of the Java Iterator
includes the remove() method. The implementation of method hasNext() uses
the Iterator to discover whether the underlying collection has more elements.
It assumes the definition of the enumeration

1 enum Boolean { True, False }

which is provided as part of the Mungo framework. This enumeration is used
to specify dependency of the protocol on the result of a method.

Overall, the StateIteratorProtocol protocol ensures that the Java Itera-
tor will be used in a way that throws no exceptions (method next() throws
NoSuchElementException when there are no more elements in the underlying
collection, and method remove() throws IllegalStateException when there
is no element to removed). The code below defines the typestate specification
StateIteratorProtocol.

1 package iterator;

2

3 typestate StateIteratorProtocol {

4 HasNext = { Boolean hasNext(): <True: Next, False: end> }

5 Next = { Object next(): HasNextOrRemove }

6 HasNextOrRemove = {

7 void remove(): HasNext,

8 Boolean hasNext(): <True: NextOrRemove, False: end>

9 }

10 NextOrRemove = {

11 void remove(): Next,

12 Object next(): HasNextOrRemove

13 } }



314 Mungo and StMungo: Tools for Typechecking Protocols in Java

A new iterator object is in state HasNext, because that is the first state
in the definition. The only method available is hasNext(). If method next()

were available then NoSuchElementException might be thrown in the case
where there are no (more) elements in the underlying collection. Similarly,
the availability of method remove() might result in IllegalStateException. A
call of method hasNext() means that the continuation of the protocol depends
on the return value of the method. In the case of False no further interaction
with the iterator is possible, thus preventing possible exceptions. If the value
True is returned then the state changes to Next, which forces the programmer
to call the next() method and proceed to state HasNextOrRemove. Method
remove() is not available because it should only be called after next() in
order to remove the element returned by next(). Method hasNext() is not
available because calling it would be redundant.

The state HasNextOrRemove offers a choice between methods remove and
hasNext(). In the former case the iterator removes the current object and pro-
ceeds to the HasNext state. Alternatively, calling hasNext() either proceeds to
state NextOrRemove or ends the protocol otherwise. In state NextOrRemove there
is still the possibility of removing the last returned object and proceeding to
the Next state (this is because a poll has already been done), or getting the
next element of the collection using method next() and proceeding to the
HasNextOrRemove state.

To summarise, if we assume semantic correctness of the methods of
iter (for example, that iter.hasNext() correctly reports the state of iter),
then by using Mungo to typecheck code that uses a StateIterator, we can
ensure that NoSuchElementException and IllegalStateException will not
occur. Specifically, we guarantee: i) not calling the next() method on an
empty collection; ii) not calling the remove() when there is no element to
remove from the underlying collection; iii) additionally, not having redundant
calls of the hasNext() method.

To avoid conflicting state changes, objects with typestates must not be
aliased. Mungo uses linear typing to prevent aliasing.

The code below, which is well-typed according to Mungo, creates and
uses a StateIterator object. It creates a HashSet containing the positive
integers smaller than 32, and then removes the even numbers.

1 Collection c = new HashSet();

2 Integer i = 0; while(i < 32) c.add(i++);

3 StateIterator iter = new StateIterator(c.iterator());

4 iterate:



14.3 StMungo: Typestates from Communication Protocols 315

5 do {

6 switch(iter.hasNext()) {

7 case True:

8 System.out.println(i = (Integer) iter.next());

9 if(i%2 == 0) iter.remove();

10 continue iterate;

11 case False:

12 break iterate;

13 }

14 } while(true);

The HashSet’s iterator is wrapped in a StateIterator object, which is
subsequently used according to its protocol. The loop structure in the protocol
is matched by the pattern label: do { ... } while(true); together with the
continue label; and break label; statements. The switch statement handles
the possible results of hasNext(), controlling the continuation or termination
of the loop. The code on line 9 chooses whether or not to call remove(); the
state here is HasNextOrRemove.

14.3 StMungo: Typestates from Communication Protocols

StMungo (Scribble to Mungo) is a transpiler from Scribble to Java, which
also generates Mungo typestate specifications. It is based on the integration
of session types and typestates [9] which consists of a formal translation of
session types for communication channels into typestate specifications for
channel objects. The latter define the order in which the methods of the
channel objects can be called. This specification of the permitted sequences of
method calls is naturally viewed as a channel protocol. We take a step further:
we extend this formal translation from binary to multiparty session types [11]
and implement it as StMungo, which translates Scribble local protocols into
typestate specifications and prototype implementation code based on TCP/IP
sockets. After refinement, the implementation is typechecked using Mungo.

A Scribble local protocol describes the communication between one role
and all the other participants in a multiparty scenario, including the way in
which messages sent to different participants are interleaved. StMungo is
based on the principle that each role in the multiparty communication can be
abstracted as a Java class following the typestate corresponding to the role’s
local protocol. The typestate specification generated by StMungo, together
with the Mungo typechecker, guide the programmer in the design and imple-
mentation of distributed multiparty communication-based programs with



316 Mungo and StMungo: Tools for Typechecking Protocols in Java

guarantees of communication safety and soundness. StMungo is the first tool
to provide a practical embedding of multiparty session type protocols into
object-oriented languages with typestate specifications.

The diagram shows how the toolchain consisting of Scribble, StMungo
and Mungo is used to generate a Java program from a Scribble protocol.

We start with a global protocol written in Scribble, which is then validated
and projected into local protocols, one for each role specified in the global
protocol. At this point we run StMungo on the local projections for which we
want to generate a typestate. The tool generates a typestate specification, a
Java API and a prototype main program. After completing the main program,
typechecking with Mungo verifies that it correctly implements the protocol.

14.3.1 Example: Travel Agency

We now illustrate the toolchain of Scribble, StMungo and Mungo by means
of a travel agency example, which models the process of booking a flight
through a university travel agent.

Three participants are involved: Researcher (abbreviated R), who intends
to travel; Agent (A), who is able to make travel reservations; and Finance (F),
who approves expenditure from the budget. In the Scribble [25] language, we
first define the global protocol among three roles, which are abstract represen-
tations of the participants. The protocol consists of sequences of interactions.
Every message (e.g. request) can be associated with a payload type (e.g.
Travel), a sender, and one or more receivers. Typically payload types are
structured data types defined separately from the protocol specification.

In the global protocol, after the check message requesting authorisation
for a trip, F can choose to approve or refuse the request.

1 global protocol BuyTicket(role R, role A, role F) {

2 request(Travel) from R to A;

3 quote(Price) from A to R;



14.3 StMungo: Typestates from Communication Protocols 317

4 check(Price) from R to F;

5 choice at F {

6 approve(Code) from F to R,A;

7 ticket(String) from A to R;

8 invoice(Code) from A to F;

9 payment(Price) from F to A;

10 } or {

11 refuse(String) from F to R,A;

12 } }

The Scribble tools can be used to validate the protocol definition and to
derive a local version of the protocol for each role, according to the theory
of multiparty session types [11]. This is known as endpoint projection. Here
is the projection for R, which describes only the messages involving that role.
The self keyword indicates that R is the local endpoint.

1 local protocol BuyTicket_R(self R, role A, role F) {

2 request(Travel) to A;

3 quote(Price) from A;

4 check(Price) to F;

5 choice at F {

6 approve(Code) from F;

7 ticket(String) from A;

8 } or {

9 refuse(String) from F;

10 } }

Notice that the exchange of invoice and payment between A and F is not
included. Similarly, the local projection for A omits the check message; we
omit its local projection. Finally, the local projection for F omits the request,
quote and ticket messages.

1 local protocol BuyTicket_F(role R, role A, self F) {

2 check(Price) from R;

3 choice at F {

4 approve(Code) to R,A;

5 invoice(Code) from A;

6 payment(Price) to A;

7 } or {

8 refuse(String) from F to R,A;

9 } }



318 Mungo and StMungo: Tools for Typechecking Protocols in Java

The common theme between protocols and typestate specifications is the
requirement to do operations in particular orders. Our methodology for
implementing the roles in a Scribble protocol is to define a Java class that
encapsulates socket connections to provide the necessary communication,
and provides methods that send and receive the messages in the protocol.
This class constitutes an API for role programming. To ensure that com-
munication methods are called in the order required by the protocol, we
associate a typestate specification with the API, so that Mungo can check
the correctness of code that uses the API. StMungo generates a Java API
and a Mungo specification. If we are implementing all of the endpoints in
a system, then the generated APIs are immediately interoperable with each
other. However, interoperability with pre-existing endpoints such as a POP3
server (Section 14.4) typically requires an extra layer in order to translate
between the abstract message labels defined in Scribble and the detailed
textual message formats required by the protocol.

For the R role, StMungo converts the BuyTicket_R local projection into
the following Mungo definitions:

1. RProtocol, a typestate specification capturing the interactions local to
the R role.

2. RRole, a Java class that implements RProtocol by communication over
Java sockets. This is an API that can be used to implement the R

endpoint.
3. RMain, a prototype Java implementation of the R endpoint. This runs

as a Java process, and provides a main() method which uses RRole to
communicate with the other parties in the session. For testing purposes
it provides a command-line interface to choose and display message
parameters.

To complete the ticket buying example, we now describe the result of trans-
lating the local protocol for R. For each choice there is an enumerated type,
named according to the numerical position of the choice in the sequence of
choices within the local protocol. The values of the enumerated type are the
names of the first message in each branch of the choice. For the choice in
BuyTicket_R we have the following definition.

1 enum Choice1 { APPROVE, REFUSE; }

Every role involved in the choice will have an enumerated type with the same
set of values, but the names of the types are not necessarily the same for
every role.



14.3 StMungo: Typestates from Communication Protocols 319

The typestate specification RProtocol defines the allowed sequences
of method calls. As it includes method headers, it also provides similar
documentation to an interface. The initial state is the first one defined.

1 typestate RProtocol {

2 State0 = { void send_requestTravelToA(Travel): State1 }

3 State1 = { Price receive_quotePriceFromA(): State2 }

4 State2 = { void send_checkPriceToF(Price): State3 }

5 State3 = { Choice1 receive_Choice1LabelFromF():

6 <APPROVE: State4, REFUSE: State6> }

7 State4 = { Code receive_approveCodeFromF(): State5 }

8 State5 = { String receive_ticketStringFromA(): end }

9 State6 = { String receive_refuseTravelFromF(): end } }

The API is defined by the class RRole, which is also generated. When
instantiated, it establishes socket connections to the other role objects in the
session (ARole and FRole); we omit the details here.

1 @Typestate("RProtocol") public class RRole {

2 public RRole(){

3 ... // Bind the sockets and accept a client connection

4 try { // Create the read and write streams

5 socketAIn = new BufferedReader(..);

6 socketAOut = new PrintWriter(..);

7 } catch (IOException e) {

8 System.out.println("Read failed"); System.exit(-1);

9 } }

10 public void send_requestTravelToA(Travel payload) {

11 this.socketAOut.println(payload); }

12 public Price receive_quotePriceFromA() {

13 String line = "";

14 try { line = this.socketAIn.readLine();

15 } catch (IOException e) {

16 System.out.println("Input/Output error."); System.exit(-1);

17 }

18 // Parse line to the appropriate type and then return it

19 return Price.parsePrice(line); }

20 ... // Define all other methods in RProtocol }

The RMain class provides a prototype implementation of the R endpoint,
using the RRole class to communicate with the other roles in the system.



320 Mungo and StMungo: Tools for Typechecking Protocols in Java

Mungo statically checks the correctness of an R implementation (either based
on the prototype or written separately), by checking that methods are called in
allowed sequences and that all possible responses are handled. For example,
main below is correct.

1 public static void main(String[] args) {

2 RRole r = new RRole();

3 Travel t = // input travel;

4 r.send_requestTravelToA(t);

5 Price p = r.receive_quotePriceFromA();

6 r.send_checkPriceToF(p);

7 switch(r.receive_Choice1LabelFromF().getEnum()) {

8 case APPROVE:

9 Code c = r.receive_approveCodeFromF();

10 println(r.receive_ticketStringFromA());

11 break;

12 case REFUSE:

13 println(r.receive_refuseStringFromF());

14 break;

15 } }

This code is checked by computing the sequences of method calls that
are made on an RRole object, inferring the minimal typestate specification
that allows those sequences, and then comparing this specification with the
declared specification RProtocol. The comparison is based on a simulation
relation. Typically the programmer would modify the prototype implemen-
tation by defining extra business logic, but she is also free to rewrite it
completely. Mungo statically checks RMain, or any client of the RRole class,
to ensure that methods of the protocol are called in a valid sequence and that
all possible responses are handled.

14.4 POP3: Typechecking an Internet Protocol Client

As a more substantial example, we use a standard internet protocol,
POP3 [18] (Post Office Protocol Version 3), to show the applicability of
session types in the real world and the use of session type tools to typecheck
protocols. The protocol allows an email client to retrieve messages from a
server. The diagram below is based on RFC 1939 [18], the official specifica-
tion of the protocol. The labels “+OK” and “-ERR” are part of the textual
message format. For simplicity, several transitions from state TRANSACTION

have been omitted.



14.4 POP3: Typechecking an Internet Protocol Client 321

The protocol starts with the client connecting to the server and the server
authenticating the connection. The client then has the choice to either submit
a username to log into a mailbox, or to end the authorization. Upon receiving
the username, the server has the choice to accept the username or to send an
error message to the client, for example if the username does not exist. After
the username has been accepted, the client is then required to send a password
or to end the authorization. If the password is accepted, the transaction stage
begins. In the transaction stage, the client has a choice of various commands:
the diagram shows just STAT (status) and LIST (summary list). Some of these
requests involve a choice at the server side to either fulfil the request or to
send an error message.

Alternatively the client can choose to QUIT. The specification of the
messages and state transitions of POP3 can be converted into a Scribble
global protocol, as shown below.

1 global protocol POP3(role S, role C) {

2 OKN(String) from S to C;

3 rec authentication_username {

4 choice at C {

5 USER(String) from C to S;

6 choice at S {

7 OK(String) from S to C;

8 rec authentication_password {

9 choice at C {



322 Mungo and StMungo: Tools for Typechecking Protocols in Java

10 PASS(String) from C to S;

11 choice at S {

12 OK(String) from S to C;

13 rec transaction {

14 choice at C {

15 STAT() from C to S;

16 OKN(int, int) from S to C;

17 continue transaction;

18 } or {

19 LIST() from C to S;

20 choice at S {

21 OK(String) from S to C;

22 rec summary_choice_retrieve {

23 choice at S {

24 DOT() from S to C;

25 continue transaction;

26 } or {

27 SUM(int, int) from S to C;

28 continue summary_choice_retrieve; } }

29 } or {

30 ERR(String) from S to C;

31 continue transaction; }

32 } or {

33 QUIT() from C to S;

34 OKN(String)from S to C; } }

35 } or {

36 ERR(String) from S to C;

37 continue authentication_password; }

38 } or {

39 QUIT() from C to S;

40 OKN(String) from S to C; } }

41 } or {

42 ERR(String) from S to C;

43 continue authentication_username; }

44 } or {

45 QUIT() from C to S;

46 OKN(String) from S to C; } } }



14.4 POP3: Typechecking an Internet Protocol Client 323

Projection using the Scribble tools produces local protocols for the client
and the server. For the rest of this section we focus on the client protocol. For
brevity we omit the authentication phase.

1 local protocol POP3 (role S,self C) {

2 OKN(String) from S;

3 ...

4 rec transaction {

5 choice at C {

6 STAT() to S;

7 OKN(int,int) from S;

8 continue transaction;

9 } or {

10 LIST() to S;

11 choice at S {

12 OK(String) from S;

13 rec summary_choice_retrieve {

14 choice at S {

15 DOT() from S;

16 continue transaction;

17 } or {

18 SUM(int,int) from S;

19 continue summary_choice_retrieve; } }

20 } or {

21 ERR(String) from S;

22 continue transaction; }

23 } or {

24 QUIT() to S;

25 OKN(String) from S; } }

26 ...

27 QUIT() to S;

28 OKN(String) from S; } } }

We use StMungo to translate the Scribble local protocol into a typestate
specification CProtocol, which defines the order in which the communication
methods are called.

1 typestate CProtocol {

2 State0 = {String receive_OKStringFromS(): State1}

3 ...

4 State9 = {void send_STATToS(): State10,



324 Mungo and StMungo: Tools for Typechecking Protocols in Java

5 void send_RETR_NToS(): State12,

6 void send_QUITToS(): State19}

7 State10 = {void send_STATToS(): State11}

8 State11 = {IntInt receive_OKNIntIntFromS(): State9}

9 State12 = {void send_LISTToS(): State13}

10 State13 = {Choice1 receive_Choice1LabelFromS():

11 <OK: State14, ERR: State18>}

12 State14 = {String receive_OKStringFromS(): State15}

13 State15 = {Choice2 receive_Choice2LabelFromS():

14 <DOT: State16, SUM: State17>}

15 State16 = {void receive_DOTFromS(): State9}

16 State17 = {String receive_SUMIntIntFromS(): State15}...}

14.4.1 Challenges of Using Mungo and StMungo in the Real
World

Programming with loops A POP3 server responds to the LIST command by
sending any number of lines, terminated by the DOT message.

The Scribble description of the state reached by +OK() uses explicit
recursion in which continue jumps to a named state.

1 rec summary_choice_list {

2 choice at S {

3 DOT() from S to C

4 continue transaction;

5 } or {

6 SUM(int, int) from S to C;

7 continue summary_choice_list; } }

The Java code generated by StMungo is a direct translation, using labelled
statements and continue. Given that we are generating imperative code rather
than recursive functions, this seems to be the only systematic way to handle
the arbitrary structure of Scribble’s rec. Although continue is a goto, its use is



14.4 POP3: Typechecking an Internet Protocol Client 325

controlled and checked by Mungo: it is only allowed when the recursion point
in the protocol has been reached. The SJ language [15] introduces sendWhile

and receiveWhile loops to match particular protocol patterns, but we have
chosen not to extend Java with new loop constructs.

1 _summary_choice_list: do {

2 switch(currentC.receive_Choice2LabelFromS().getEnum()){

3 case Choice2.DOT:

4 Void payload10 = currentC.receive_DOTVoidFromS();

5 System.out.println("Received from S: ." + payload10);

6 continue _transaction;

7 case Choice2.SUM:

8 SUMIntInt payload11 = currentC.receive_SUMIntIntFromS();

9 System.out.println("Received from S: " + payload11);

10 continue _summary_choice_list; } }

11 while(true);

Abstract vs. concrete messages When designing a complete system and
implementing all the roles, StMungo can generate concrete textual messages
in a uniform way; alternatively, we could use a structured message format
such as JSON. However, in POP3 and other standard protocols, the client
has to work with the textual message formats defined by the protocol. For
example, the Scribble message OK(int, int) from S to C; corresponds to
a line of text such as +OK 2 200. In the current implementation of the POP3
example, conversion between abstract and concrete messages is done by hand-
written code, but we are working on a tool to generate message converters
from a specification.

Naming StMungo converts Scribble message names into Java method
names. The method definition depends on whether or not the message appears
at the beginning of a Scribble choice, and this cause naming conflicts if the
same name is used for messages in both kinds of position. For example, OK
and OKN in POP3 would more naturally both be OK.

Non-standard implementations Real-world servers do not always follow
the RFC exactly. The specification of POP3 states that if the client sends
an unknown username, it is rejected and the username must be sent again.
However, the server used for this case study, namely GMX.co.uk, accepts an
unknown username and expects the client to send the password again. Conse-
quently, even after completing the prototype client generated by StMungo
and checking it with Mungo, it is necessary to test the client thoroughly



326 Mungo and StMungo: Tools for Typechecking Protocols in Java

with existing servers if we want to ensure correct operation in all cases.
When deviations from the RFC are discovered, the Scribble definition of the
protocol can be generalised accordingly. This problem could be reduced by
promoting the use of formal protocol descriptions within RFCs.

14.5 Related Work

Session types. The main pieces of related work on session types and Java are
the Session Java (SJ) language [15] and the API generation approach [14],
both by Hu et al. The API generation approach has been used to to analyse an
SMTP client in Java. The API for SMTP implements multiparty session types
using a pattern in which each communication method returns the receiver
object with a new type that determines which communication methods are
available at the next step. Standard Java typechecking can verify the cor-
rectness of communication when the pattern is used properly, with runtime
monitoring being used to ensure linearity constraints are fulfilled. In contrast
with this approach, Mungo’s approach is completely static.

SJ [15] builds on earlier work [4, 5, 7] to add binary session type channels
to Java. SJ implements a library for binary sessions that have a pre-defined
interface. The syntax of Java is extended with communication statements to
allow typechecking. The scope of a session is restricted to the body of a
single method. Mungo removes this restriction by allowing the abstraction
of multiparty session types as user-defined objects that can be passed and
used throughout different program scopes.

Typestates. There have been many projects that add typestates to practical
languages, since the introduction of the concept by Strom and Yemini [22].
Plural [2] is a noteworthy example. It is based on Java and has been used
to study access control systems. Plural implements typestates by using anno-
tations to define pre- and post-conditions on methods, referring to abstract
states and predicates on instance variables. By contrast, Mungo explicitly
defines the possible sequences of method calls. Plural and Mungo both allow
the typestate after a method call to depend on the return value.

Plaid [1, 23] introduces typestate-oriented programming as a paradigm.
Instead of class definitions, a program consists of state definitions containing
methods that cause transitions to other states. Transitions are specified in a
similar way to Plural’s pre- and post-conditions. Similarly to classes, states
can be structured into an inheritance hierarchy. As opposed to Plaid, Mungo
focuses on the object-oriented paradigm in order to be applicable to Java.

Our previous paper [16] discusses related work in more detail.



References 327

Acknowledgements This research was supported by the UK EPSRC project
“From Data Types to Session Types: A Basis for Concurrency and Distribu-
tion” (EP/K034413/1) and by COST Action IC1201 “Behavioural Types for
Reliable Large-Scale Software Systems”. We thank the reviewers for their
detailed comments.

References

[1] J. Aldrich, J. Sunshine, D. Saini, and Z. Sparks. Typestate-oriented
programming. In OOPSLA ’09, pages 1015–1022. ACM Press, 2009.

[2] K. Bierhoff, N. E. Beckman, and J. Aldrich. Practical API protocol
checking with access permissions. In ECOOP ’09, volume 5653 of
Springer LNCS, pages 195–219, 2009.

[3] S. Capecchi, M. Coppo, M. Dezani-Ciancaglini, S. Drossopoulou, and
E. Giachino. Amalgamating sessions and methods in object-oriented
languages with generics. Theoret. Comp. Sci., 410:142–167, 2009.

[4] M. Dezani-Ciancaglini, S. Drossopoulou, D. Mostrous, and N. Yoshida.
Objects and session types. Information and Computation, 207(5):
595–641, 2009.

[5] M. Dezani-Ciancaglini, E. Giachino, S. Drossopoulou, and N. Yoshida.
Bounded session types for object oriented languages. In FMCO ’06,
volume 4709 of Springer LNCS, pages 207–245, 2006.

[6] M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopolou.
Session types for object-oriented languages. In ECOOP ’06,
volume 4067 of Springer LNCS, pages 328–352, 2006.

[7] M. Dezani-Ciancaglini, N. Yoshida, A. Ahern, and S. Drossopolou. A
distributed object-oriented language with session types. In TGC ’05,
volume 3705 of Springer LNCS, pages 299–318, 2005.

[8] S. J. Gay and V. T. Vasconcelos. Linear type theory for asynchronous
session types. Journal of Functional Programming, 20(1):19–50, 2010.

[9] S. J. Gay, V. T. Vasconcelos, A. Ravara, N. Gesbert, and A. Z. Caldeira.
Modular session types for distributed object-oriented programming. In
POPL ’10, pages 299–312. ACM Press, 2010.

[10] G. Hedin. An introductory tutorial on JastAdd attribute grammars. In
Generative and Transformational Techniques in Software Engineering
III, volume 6491 of Springer LNCS, pages 166–200, 2011.

[11] K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous
session types. In POPL ’08, pages 273–284. ACM Press, 2008.



328 Mungo and StMungo: Tools for Typechecking Protocols in Java

[12] K. Honda. Types for dyadic interaction. In CONCUR ’93, volume 715
of Springer LNCS, pages 509–523, 1993.

[13] K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and type
discipline for structured communication-based programming. In ESOP

’98, volume 1381 of Springer LNCS, pages 122–138, 1998.
[14] R. Hu and N. Yoshida. Hybrid session verification through end-

point API generation. In FASE 16, volume 9633 of Springer LNCS,
pages 401–418, 2016.

[15] R. Hu, N. Yoshida, and K. Honda. Session-based distributed pro-
gramming in Java. In ECOOP ’08, volume 5142 of Springer LNCS,
pages 516–541, 2008.

[16] D. Kouzapas, O. Dardha, R. Perera, and S. J. Gay. Typechecking
protocols with Mungo and StMungo. In PPDP ’16, pages 146–159.
ACM Press, 2016.

[17] M. Neubauer and P. Thiemann. An implementation of session types. In
PADL ’04, volume 3057 of Springer LNCS, pages 56–70, 2004.

[18] Post office protocol version 3, RFC 1939. https://www.ietf.org/rfc/

rfc1939.
[19] R. Pucella and J. A. Tov. Haskell session types with (almost) no

class. In Proceedings of the 1st ACM SIGPLAN Symposium on Haskell,
pages 25–36. ACM Press, 2008.

[20] Scribble project homepage. www.scribble.org.
[21] Simple mail transfer protocol, RFC 821. https://tools.ietf.org/

html/rfc821.
[22] R. E. Strom and S. Yemini. Typestate: A programming language concept

for enhancing software reliability. IEEE Trans. Softw. Eng., 12(1):
157–171, 1986.

[23] J. Sunshine, K. Naden, S. Stork, J. Aldrich, and É. Tanter. First-class
state change in Plaid. In OOPSLA ’11, pages 713–732. ACM Press,
2011.

[24] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language
and its typing system. In PARLE ’94, volume 817 of Springer LNCS,
pages 398–413, 1994.

[25] N. Yoshida, R. Hu, R. Neykova, and N. Ng. The Scribble protocol
language. In TGC ’13, volume 8358 of Springer LNCS, pages 22–41,
2013.


